Ins. J. Heat Mass Transfer.  Yol. 33, No. 4, pp. 593-602. 1990
Printed in Great Britain

0017-9310/90 $3.004-0.00
© 1990 Pergamon Press plc

Numerical and analytical solutions of
one-dimensional freezing of dilute binary
alloys with coupled heat and mass transfer

S. C. GUPTA
Department of Applied Mathematics, Indian Institute of Science, Bangalore 560012, India

(Received 29 April 1988 and in final form 21 February 1989)

Abstract—The purpose of the present study is to present simple and effective numerical and analytical
solutions of one-dimensional solidification of dilute binary alloys. Although the numerical and analytical
results are presented here for one-dimensional radially symmetric inward spherical solidification, the
methods of solution are valid for several other one-dimensional problems. It is assumed that the heat and
mass transport takes place only by diffusion and there is local thermodynamic equilibrium at the freezing
front which is assumed to be planar. In the present study, solidus and liquidus curves are assumed to be
linear, however, more general phase diagrams can also be accommodated. Numerical results are presented
for wide ranging values of the ratios of diffusivities. The occurrence of steep concentration gradients at the
freezing front does not require any special modification of the numerical scheme. Using the present
analytical method, all the previously existing exact analytical solutions which pertain only to the semi-
infinite region can be derived in a systematic way.

1. INTRODUCTION

DEPENDING on the assumptions made about the
nature of the solid-liquid interface whether it is taken
as planar or nonplanar, the literature on binary alloy
solidification problems can be divided, broadly, into
three classes. Class I consists of those problems in
which the freezing front is taken as planar and it
distinctly separates the solid region from the liquid
region with no mushy zone in between. Mostly
numerical solutions, and a few analytical solutions,
exist for these problems. In class II problems, the solid
and liquid regions are separated by a mushy zone in
which solid and liquid both coexist. The fraction of
the solid present in the mushy zone is approximated
in some suitable way to carry out numerical com-
putations such as in ref. [1]. As far as we know no
analytical solution exists for these problems. In class
11 problems, the physical model is the same as in class
IT problems but the objective is to study the stability
of the planar phase boundary, segregation, relations
between the solid fraction and the temperatures in the
mushy zone, etc., such as in refs. [2-4].

The present study belongs to class I problems and
therefore only those previously obtained numerical
and analytical solutions which use the planar phase
boundary assumption will be discussed here in detail.
As compared to the Stefan problems, extremely few
analytical solutions of alloy solidification exist in the

literature [5-7]. This is not surprising as alloy solidi-

fication is far more complicated than the Stefan prob-
lem. In the present problem the temperatures and
concentrations at the freezing front are time depen-
dent and are unknown. The freezing front is not
known a priori. The concentration has an unknown
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time-dependent discontinuity at the freezing front.
Tsubaki and Boley [5] and Rubinstein [6] have con-
sidered one-dimensional alloy solidification in a semi-
infinite medium. Temperatures and concentrations at
the freezing front remain fixed constants for all time.
If natural convection is neglected then the solution in
ref. [6] can be obtained as a particular case of the
solution in ref. [S}. No systematic method of solution
has been presented in these papers. In ref. [7], Boley
obtained a short-time solution for a finite slab. The
method of solution does not seem to be applicable to
other geometries. For alloy solidification, in a spheri-
cal geometry, no analytical solution or for that matter
any method of solution has been proposed earlier.
The main features of the present analytical technique
which is applicable to one-, two- and three-dimen-
sional semi-infinite regions, a one-dimensional spheri-
cal cavity and one- and two-dimensional cylindrical
geometrics, etc. are as follows.

The solid and liquid regions at any time are em-
bedded in the original region occupied by the melt.
This original region is then extended fictitiously and
fictitious unknown initial temperatures and con-
centrations are assumed for the original and extended
regions. These unknown initial temperatures and con-
centrations control the conditions at the freezing
front. This central idea in the present method is inde-
pendent of the boundary conditions and the geometry
concerned and depends only on the availability of the
source solutions.

Levin [8], Wollhdver et al. [9] and Derby and Brown
{10} have obtained finite difference numerical solu-
tions for a finite slab. They have neglected solute
diffusion in the solid and thus considered a simplificd
problem. Some numerical approaches up to 1981 can
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NOMENCLATURE
A4, coeflicients in equation (25) Ta freezing temperature of the pure solvent
C dimensionless concentration of the K]
solute in the solution 14 dimensionless time for analytical
¢ specific heat of the solid [J kg~ ' K] solution, 2(kst/R3)"/?
D diffusion coefficient fm?s~ ] X position of the freezing front

erf { ) error function
erfc ( ) complementary error function

Jfs(v)  dimensionless prescribed temperature
in equation (2), prescribed
temperature/ T,

s coefficients in equation (26)

k thermal diffusivity [m2s~'}

K thermal conductivity [Jm~"s~' K~
! latent heat of fusion [J kg™']

m, slope of the liquidus line in Fig. 1

m, slope of the solidus line in Fig,. 1

Ny number of space grid points in the

liquid

N number of space grid points in the solid

P dummy variable of integration in
equations (19)-(22)

r radial coordinate in spherical polar
coordinates [m}

R dimensionless radius of the sphere, r/R,

R, radius of the sphere [m]

t time [s}

IN variable having dimensions of time [s]

Liun run time of the numerical scheme for
complete solidification on a DEC
1090 computer [s]

T dimensionless temperature,
temperature/ T

[dimensionless], distance from the
origin to the freezing front

y dimensionless time for numerical
solution, t/t,

Ay time step in the numerical scheme.

Greek symbols

« (ks/k)'"?

a (ks/Ds)""?

a3 (kS/DL)l/2

B Ki/Ks

B D /Ds
ksto/RY

0", 8/ dimensionless initial temperatures
in equations (19), (21), (23) and (24);
i=L.S

A le,Ta

o, ¢!? dimensionless initial
concentrations in equations (20) and
(22)-(24);i=L,S.

Subscripts
L liquid
S solid.

be found in ref. [8]. In the semi-analytical approach
adopted by Levin [8], the numerical solution is of
routine type and the generalizations of the methods
employed in refs. [9, 10] to suit the present problem
are not known. Meyer’s {11] numerical solution per-
tains to a two-phase coupled problem but is com-
plicated, at least, as compared to the present work.
We shall discuss Meyer’s solution subsequently after
the present numerical scheme has been described.
Crowley and Ockendon [12] and Wilson et al. [13]
have used an enthalpy method for numerical solutions
of a finite slab. Both these works suffer from the
disadvantage that when the thermal and mass diffus-
ivities are different in the solid and liquid phases,
respectively, some modified values are assigned to
these parameter values. The validity of these modified
values does not follow from any physical law but they
are accepted since the numerical values compare well
with Rubinstein’s solution [6] which is a special type
of solution in which the meiting temperature is inde-
pendent of time. Only explicit finite difference schemes

have been used in refs. [12, 13] which are generally
unsuitable for longer times. In the present study, the
idea of moving grid points [14] has been suitably
exploited to suit the coupled problem. After over-
coming the difficulties encountered, an accurate pro-
cedure has been indicated which is readily applicable
at least to class I problems.

In all the works [8-13] reported earlier, the solid—
liquid interface has been assumed to be planar and
the effects of advection in the melt have been neglected
which is also the case in the present study. In rapid
solidification of alloys, the physical model assuming
a planar phase boundary adequately represents the
real situation [15]. Recently Trivedi [16] has given a
criteria according to which the existence of a planar
phase boundary could be predicted. This is just to
emphasize that, depending-on the parameter values,
there could be situations in which the mushy region
may not occur or its effect may not be significant. We
shall see later that in Figs. 2 and 3 of this paper, no
mushy region occurs. However, it cannot be denied
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that in many situations the planar phase boundary
model is inadequate and also advective terms in the
melt region cannot be neglected.

The main purpose of the present study is to present
simple and effective numerical and analytical solu-
tions of class I problems which are till now missing in
the literature. Since the present numerical scheme is
valid for diffusion in both the phases and the par-
ameters can have wide ranging values, it is hoped that
this study will help in a better understanding of the
alloy solidification process.

2. PROBLEM FORMULATION

Consider a binary alloy of two components A and
B which is in the liquid state at time ¢ = 0 and occupies
the spherical region 0 < R < 1 (one-dimensional radi-
ally symmetric problem). Component B forms a dilute
solution in component A. The alloy is cooled at the
surface R = 1 and the temperature is prescribed there.
If the prescribed surface temperature satisfies certain
conditions which are discussed below in equations
(17) and (18) then the solidification will start at the
boundary and with time, the solid-liquid interface
which is assumed to be sharp, will progress towards
- the interior till the whole of the alloy gets solidified.
It is assumed that there is local thermodynamic equi-
librium at the freezing front and solidus and liquidus
curves are linear as indicated in Fig. 1. The problem
under consideration is to find the temperature and
concentration profiles in the solid and liquid regions
and the freezing front satisfying the following dimen-
sionless differential equations, initial, boundary and
interface conditions.

Solid region
2%%=%§—;(RTS), XV)SR<L V>0 ()
Lilgai=fs(¥V), V20 ()
2«%%%:%:—;(11@), X(V}<R<L V>0 (3)
%QRE,._,a-O’ V0. 4)

1.0

TEMPERATURE

0.0 CONCENTRATION
FiG. 1. Linearized phase diagram for a dilute binary alloy.
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Liquid region
aT, V 6%(RT.)
r Jutl SO whiel. 14
Tilvao=0"(R), 0OKR<I ©)
oT,
TR oo 0 D
aC, v e
2a§7-V£ =2 3gi(RG), 0SR<X(V), V>0
(8
Cilv-o=¢{"(R), OSR<1 &)
¢,
’373“&-0 =0. {10)
Solid-liquid interface conditions
o _gam|  _uax
ORlgex ' OR|gax V d¥V
o
OR |gax "' OR|pey
2ai(1 —m,jm,) dx
=w£§—V—”{iCLIR'xa7 (12)
Tilgaxy = 1=mCilpex (13)
Tslrax = l‘mzcs lowx 14
mCslrmy = M Cp lgay (15)
X(0)=1. (16)

Equations (1) and (5) are the heat conduction equa-
tions and equations (3) and (8) the mass diffusion
equations. Equations (2) and (4) are the prescribed
boundary conditions at R = 1 which could be time
dependent and equations (6) and (9) are the initial
conditions which could be space dependent. Equa-
tions (11) and (12) are the heat balance and mass
balance conditions, respectively, at the interface. The
liquidus line is given by equation (13) and the solidus
line by equation (14). Temperature is continuous
across the interface. m, 2 0 depending on whether
m;/m; $ 1. All physical parameters are taken as con-
stants but they could be different for different phases.
Both the phases have the same density and so there is
no natural convection in the melt. For the com-
mencement of the solidification at R = 1 at time V=
0, we must have

OP(R) < 1—mp{"(1), OSR<S1 (17)
SN <t—me"(1), V=o. 1s)

Without any loss of generality it can be assumed that
the solidification commences at R = 1 at time V' = 0.
Because, if the solidification starts at ¥ = ¥V, ¥ > 0,
the concentration of the liquid remains unchanged
for 0 € V< ¥V, and 8{"(R) can be regarded as the
temperature of the liquid at V = V,,.
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3. METHOD OF SOLUTION AND
ANALYTICAL RESULTS

The solutions of equations (1), (3), (5) and (8) can
be written as follows:

1 ! 3202
Te = —— e~ (R-pY/V* gth d
s \/RRV[LP $"(p) dp

+ J:mpe—m-p)z/vl ggZ)(p) dp],
0SR<w, V>0 (19)

ot

JaRV

1
- U p e~ P 4(0(p) dp
0

+ ’[ peTHRPI g (p) dp],
i

0<SR<w, V>0 (20)

1
[[ p {e-z%(k—p)z/l/’__,e—zi(mm’/vz}
0

t T J=RV
e}

-60"(p) dp_*,J' p{e—'—'fm—m’/"’_eﬂftkﬂ)’w’}
1

'9{2’(p)dp], 0SR<w, V>0 (21)

1
C. = %3 P {e‘ai(k—p)zfl’z__ezi(R+p):!V1}
\/ 7RV Jo

2
.4,}_!)(1,) dp+ J: P {e-ai(k—p)’/ﬂ_e—zi(kw)’/vl}

-¢‘L”(p)dp], 0<SR< o0, V>0 (22)

It can be checked that T, in equation (21) satisfies
conditions (6) and (7) and C, in equation (22) satisfies
conditions (9) and (10). The initial temperatures 85",

P and 6{” and initial concentrations ¢{", ¢§* and
¢ are fictitious and are unknown. They play an
important role in satisfying the boundary conditions
at the freezing front. Mathematically there are seven
unknowns and seven conditions to be satisfied. The
following series expansions for the known and
unknown functions will be assumed :

x O, M)
0 iy = R-1y—7r
@, 4" = ¥ R=1I'— m ..,
O<SR<1;i=L,S (23

L0102, 0(Y)
noR aad

62,6 = 3 (R—1)

nwG

l<R<w:i=L S (24)

XV =1+ Y 4V, V>0 (25)
=1

=Y AV, v2o0

n=0

(26)

The problem now is to determine the unknown
coefficients occurring in equations (23)— (25). The
method of determining unknowns is similar to the one
described in detail in earlier works [17, 18] in which
Stefan problems have been studied. Just for com-
pleteness sake we mention here that the solutions
given in equations (19)-(22) are substituted in equa-
tions {2), (4), (10)-(13) and (15) and the nth deriva-
tives of these equationsforn = 0, 1,2,.. ., with respect
to V are obtained. The unknown coefficients can be
determined in a systematic way by taking the limits
V' — 0+ of these equations. The details of the algebra
are not given here. The coefficient 4, in the moving
boundary and some related quantities are given
below. In the numerical work, the coefficient 4, was
also included but is not given here to save space

2/mAA, =2e 4 {1 0" (1)}
—2,Be™ ' HA()—00 (1)} (27)
erf (4,)05(1) = {1 +erf (4 )} 1% = 1 +m,pl"

(28
82(1) = 237 -6 (1) 29
{I+erf (4,2)}0°(1) = 2—2m, (" (1) (30)

2my V(1) = mferfe (4,23 9{ (1)
+{l+erf (4,25)} 6P ()] (3D
(1) = §"(1) (32)
[Vradd,(1—m,/my){1 +erf (4,x3)}
+a3 By e )PP (1) = [a,8, e~
—/ma3(L—m[my)d, erfc (4,23)]p"(1).
(33)

The numerical values of 4, and 4, from their ana-
lytical expressions can be easily calculated. In
principle, the coeflicients A;, 4,, etc. in the moving
boundary can also be calculated but the algebra
becomes extremely lengthy. Along with the unknowns
of the moving boundary, the unknowns in the tem-
perature and concentration solutions are also deter-
mined. The temperature T, (R, V) in the liquid region
which is valid for small ¥ and small |R—1] is given
as

T (R, V) = ferfc {a(R—1)/V}

6"
x {01"(1)+(R— D=k

}_. _r
R Q@Jr2iR)

o

+ 2 —erfe {0, (R—1)/V}] {0{2’(l)+(R-— 1)

aoh
x {emw&x-uﬁ

xexp {—af(R—1)*/¥'?}
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00| }+ 4
R |ear})  (2(/nRa)

{9‘5’(1)4-(21?- 1y
0
3R

+terms of the type (R—1)"V",
where m+n22, V>0, R>0. (34

The derivation of the above solution is similar to the
solutions discussed in detail in refs. [17, 18] in which
the justification of the method of solution, jus-
tification of the series expansions for known and
unknown functions, the time for which the short-time
solution is valid, etc. have also been discussed in the
context of Stefan problems. To determine Ty(R, V),
put a, = 1 and replace the subscript L by subscript S
everywhere in equation (34). C(R, V) and C (R, V)
can be determined by putting «, = «, and o, = a,,
respectively, in equation (34) and replacing 0 by ¢
everywhere.

Rwm §

}CXP {—ai(R=-1)"/V?}

4. FURTHER APPLICATIONS OF THE
ABOVE METHOD

By choosing an appropriate source solution and
using the above method of analytical solution, the
solution of several coupled heat and mass transfer
problems pertaining to a semi-infinite medium, cyl-
indrical geometries and an infinite medium with a
spherical hole, etc. can be obtained. The boundary
conditions prescribed at the fixed boundaries of the
regions considered could be of the first, second or
third kind. It may be pointed out here that once an
appropriate source solution is chosen for the region
under consideration and temperature and con-
centration solutions are written down in terms of the
source solution, the method of solution remains the
same as described above and only the details of the
algebra change. Although the details of the algebra
have been avoided here to save space, it may be men-
tioned that the present solution is obtained in a sys-
tematic and straightforward manner. The solution so
obtained is in general a short-time solution, However,
in some cases, such as the problem considered by
Tsubaki and Boley [5], an exact analytical solution
can be obtained by the present method which agrees
with the solution given in ref. {6]. The additional
advantage in the present method is that the solution
is obtained in a systematic way and does not depend
on the fortuitous choice of functions.

5. NUMERICAL SOLUTION AND DISCUSSION

The method of numerical solution will be discussed
here in some detail so as to make it useful to the reader.
The emphasis is more on showing the feasibility of
the numerical scheme for a wide range of parameter
values and also to indicate the ease with which the
numerical scheme can handle sharp concentration
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gradients near the phase boundary. Because of these
priorities, no extensive study of any alloy has been
done in particular.

The main feature of the Murray and Landis finite
difference numerical scheme [14] is that the space grid
points move with the freezing front position. An
efficient execution of this numerical scheme for a one-
dimensional Stefan problem has been recently pro-
posed [18]. The present numerical work concerning
the alloy solidification is a suitable adaptation of the
previous work. The major hurdles one comes across
in the coupled problem are the determination of the
temperature or the concentration at the freezing front
which is not known a priori, and, the handling of the
sharp concentration gradients at the freezing front.
A very large number of numerical experiments were
carried out to arrive at an appropriate execution of
the numerical scheme which in essence is as follows.

The dimensionless times used for analytical and
numerical works are ¥ and y, respectively. After
assigning appropriate velocities to the space nodal
points, the finite difference discretization of the heat
equations (1) and (5) and mass diffusion equations (3)
and (8) can be carried out using the implicit scheme.
For example equation (8) can be discretized as

crl-c 1

Ay - agARE {Clrj- 1J+1 —2C£J+I
+C|'.— LS+ |}+ ZAIR (C{* e —Ci-\+ I)
L
< X' =X (N —1-DR, 2
AyXJ+! a%iARL ’

i=12,...,N;J=0,1,2,3,... (35)

Superscript i indicates that the quantity is evaluated
at the ith nodal point and superscript J indicates that
the quantity is evaluated at time JAy; AR_ is the
uniform distance between any two space nodal points
in the liquid region. The nodal point i = O corresponds
to the point at the moving interface. Suppose that the
freezing front, temperatures and concentrations are
known at time JAy. Equation (12) can then be used
to determine a first approximation of X’*' in which
the concentration derivatives are calculated at time
JAy using three point formulas. Equation (11) is then
used to obtain a first approximation of Ty at X’/+!
and at time (J+ 1)Ay. In doing so, some of the quan-
tities are not known at y = (J+ 1)Ay; therefore their
values at time JAy are substituted instead. Tem-
peratures and concentrations at all the space nodal
pointsand attime y = (J+ 1)Ay can now be calculated
from the discretized equations (1), (5), (3) and (8).

A second approximation of X/*! is obtained from
equation (12) in which the concentration derivatives
are now calculated at time (J+1)Ay. A second
approximation of T at X* ' and at time (J+1)Ay is
then obtained from equation (11). X’*! was iterated
till the absolute difference between successive iter-
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ations became less than 1076 At subsequent times,
the various quantities were again calculated in the
manner indicated above. At time y = Ay, the ana-
lytical values of freezing front, temperatures and con-
centrations in the solidified thickness were used in the
numerical scheme. The analytical solution was not
used afterwards at any other time. It may be remarked
here that based on the above procedure, several ways
of determining moving boundary, temperatures, etc.
can be thought of and many of them were tried. The
procedure listed above was found to be the most stable
and accurate.

The determination of the freezing front and freezing
temperature in Meyer’s work (refer to equations (15)
and (16) in ref. [11]) does not seem to be as simple and
straightforward as in the present numerical scheme.

A large number of numerical experiments were
carried out and it can be said that successive iterations
do converge, in the sense that the difference between
two successive iterations becomes less than 10~° for
wide ranges of parameter values. Do the iterations
converge to the correct value? To verify this, several
analytical and numerical checks are available. In
Table 1, the numerical solution has been compared
with the analytical solution for two sets of parameter
values. The analytical solution is a short-time solution
and is valid for small values of ¥ and | R— 1 (refer to
refs. [17, 18] also) and therefore, temperatures and
concentrations in the liquid cannot be compared with
the numerical solution at all the space grid points. It
may be noted that in Table 1 for VV = 0.15, the numeri-
cal scheme has run for about 20 time steps with
Ay =0.001 and the good agreement between the
analytical and numerical solutions is in order. The
integral mass balance check provides a useful numeri-
cal check. A second numerical check is provided by
the stability of the numerical results when the time
step is halved and the number of space grid points

is doubled. Later, these numerical checks have been
discussed further in the context of the figures drawn.

In accordance with the physical and mathematical
model considered in equations (1)-(14), the solid-
liquid interface at any time divides the region
0 < R< 1, into two distinct regions, namely, solid
and liquid regions. Our mathematical and numerical
models do not account for the existence of the mushy
region. The temperatures of the points lying in the
region X (V) < R < 1 should be less than or equal to
Ts|z-x- These points will constitute a solid region.
The temperatures of the points lying in the region
0 < R < X(¥V) should be greater than or equal to
Tslg-x. These points will constitute a liquid region.
If the numerical values of the temperatures do not
satisfy the above criterion then they are inconsistent
with the physical model considered in class I problems
and such values will be regarded as inaccurate. In
none of the numerical experiments conducted in this
study, were inconsistent values obtained.

In Fig. 1, the solidus and liquidus lines are defined
by equations (13) and (14). The phase diagram in Fig.
1, is interpreted as follows.

If the point (C, T') lies above the liquidus line then
it is in a stable liquid phase, while if the point (C, T)
lies below the solidus line then it is in a stable solid
phase. If the point (C, T) lies in the region between
the liquidus and solidus lines, it is regarded as a point
in the mushy region. Wilson e al. [19] have interpreted
the numerical results of Rubinstein’s solution [6] per-
taining to a class I problem according to the above
criterion and pointed out the existence of an artificial
mushy region just in front of the interface. The term
artificial is justified here as in class I problems, only
solid and liquid regions exist. In Figs. 2 and 3 of this
paper, no artificial mushy region occurs but in Figs.
4-8 it does.

In Figs. 2-8, temperatures, concentrations and

Table 1. Comparison of the numerical solution with the short-time analytical solution for two sets of parameter values. First
set of parameter values:a, = 3,0, = L, a; =3, A= 1.5, =2.0,m, = 0.4. m, = 0.6.8{"(R) = L.1. ${"(R) = 0.1. fo(V) = 0.8

Temperatures in the Concentrations in the Freezing
solid at the pointst solid at the points front
14 R, R, R, R, R, R, X)
0.077 0.9545% 0.8777 0.8010 0.0763 0.0763 0.0762 0.9925
’ 0.9546 0.8772 0.8000 0.0756 0.0756 0.0756 0.9939
0.15 0.9554 0.8797 0.8047 0.0762 0.0762 0.0761 0.9853
; 0.9541 0.8767 0.8000 0.0763 0.0764 0.0764 0.9861

Second set of parameter values: @, = 3, ay = 50, a; = 20, A = 1.5, f = 2.0, m, = 0.4, m, = 0.6, 0{"(R) = 1.1, ¢{"(R) = 0.1,

fs(¥)=08
077 0.9422 0.8715 0.8009 0.0967 0.0956 0.0944 0.9933
0. 0.9430 0.8714 0.8000 0.0951 0.0948 0.0947 0.9942
0.15 0.9415 0.8726 0.8042 0.0993 0.0969 0.0944 0.9869
: 0.9406 0.8700 0.8000 0.0990 0.0976 0.0948 0.9871

tR, =X(M+i(l-X(¥))/2,i=0,1,2.

1 Upper and lower values are analytical and numerical values, respectively.
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freezing front are shown for different sets of parameter
values. The boundary temperatures, initial tem-
peratures and initial concentrations have been taken
as constants. Since there are in general sharp con-
centration gradients around the freezing front, the
number of space grid points N, and ‘Ng have to be
larger as compared to the Stefan problem of the same
geometry. In the captions to the figures, the values of
Ns, N, the computer run time, etc. are also given.
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The numerical work involves a large number of
parameters. It seems difficult to associate a particular
effect in the graphs with a specific parameter with
certainty, more so, when the numerical work was done
mostly to show the feasibility of the numerical
scheme, but still some observations can be made. In
Fig. 2, the ratios ks/Dg and &, /D, are both equal to
one. Numerical results were also obtained for f = 2.0
and other parameters remaining the same as in Fig. 2
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but are not reported here to save space. In both cases,
no artificial mushy region occurs. In the latter case,
the total solidification time increases by about 25%
but if one compares the temperatures and con-
centrations with those in Fig. 2 at the same freezing
front position then the maximum difference found is
about 2-3% which occurs at points far away from the
freezing front. In Fig. 3, the ratio k /D, = 1.8. No
artificial mushy zone occurs. In Figs. 2-5, for larger

S. C. Gupta

1 T T

& o9} ! | )
2 l | | |
T | | -\ !
& | ! ' !
|
3 | | O\
= 0.7 | 1 !
py=2.36 I |
1 |
]
| FREEZING ! |
| FRONT |
_1_ 0.5 | ! { I
2 0.as)! R—e !
8 ag=, go=l,
& a,.zo,-,.o.‘
20125} 8,=06,f=1 y20.76 ym 0195
-
§ A=1S yal. Tt N I
S 0.1 i M=0.3 | | |
4 009l 1 I 1l TH
0.0 0.2 0.4 0.6 0.8 10
R~

FiG. 8. Temperatures, concentrations and freezing front.
tyn =about 825 min. H(R) =11, o{"(R)=0.1,
(V) =05, Ay = 0.005, Ng = 161, N = 801,

times, the concentration has significantly changed at
all points of the region 0 < R < X but in Figs. 6-8,
even for larger times, the concentration changes are
confined only to a small neighbourhood of the freez-
ing front. This effect could be due to larger values of
o3 in Figs. 6-8 than in Figs. 2-5.

In Figs. 2-5, all the parametric values are neither
too high nor too low. The numerical scheme in all
such cases was found to run fairly smoothly, in the
sense that successive iterations converge fast, the inte-
gral mass balance check can be satisfied almost
exactly, the variations in temperatures, concentrations
and freezing front values can be made insignificant
for small changes in the time step and the number of
space grid points by appropriately choosing Ay, Ny
and N, .

In Figs. 4-8, for larger times, the temperature curves
in the region 0 € R < X have become horizontal lines
and this could be attributed to the large values of the
ratio k. /D_. However, initial and boundary tem-
peratures also play a role in this. The high thermal
diffusivity in the liquid seems to be responsible in
reducing total solidification times in Figs. 4 and 8. In
Fig. 6, the large solidification time is due to the high
value of the prescribed boundary temperature.
Numerical results were also obtained for a prescribed
boundary temperature equal to 0.5 in Fig. 6 and the
total solidification time is reduced to less than half of
that in Fig. 6. In Fig. 7, m, and m, have negative
values. The maximum error in the integral mass
balance check was found to be less than 0.3% in Figs.
2-5 and the same error in Figs. 6-8 is less than 1%.

Several trial runs were carried out for the cases in
whichm, =4, m,=20,a,=1, a, =20, ;=1 (the
case of low solute diffusion in the solid) remained
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fixed and other parameters were varied. The numerical
scheme works alright but it takes a very long time.
In about 6 min computer run time, the maximum
solidified thickness obtained was about 0.2 indicating
that for some limiting cases convergence could be
slow.

Apart from some specific comments made earlier
about the numerical work, the following general com-
ments can be made.

(1) A 1 or 2% error in the integral mass balance
check was not found to be a serious problem provided
the error changes only marginally with time say, from
2% it becomes about 2.5% during total solidification.
Whenever this error remained stable, it was possible
to make it insignificant by a suitable choice of Ay, N
and Nj.

(2) The freezing front and temperature values were
found to be fairly stable with respect to changes in
Ay, N_ and N but concentration values especially
near the boundary R = | varied in some cases by 1-
3%. If one is prepared to accept an error of 1-2% in
the temperatures and freezing front values and about
5-15% in concentration values, then the computer run
time can be considerably reduced by using a smaller
number of grid points, e.g. Ng = 41 and N, = 121.

(3) It is often not possible to relax the convergence
criterion of successive iterations, i.e. go to the next
time step if the absolute difference between successive
iterations becomes less than 10~° or 107, etc. as in
some cases the results became absurd after some time
steps.

Some comparison of general features of the numeri-
cal results obtained here can be carried out with exper-
imental data. However, checking of numerical values
with experimental values is generally difficult unless
the experiments are performed in accordance with
the mathematical model and experimental values are
available. It is well known that for short time the
solid-liquid interface in a spherical problem has the
same pattern of growth as in the slab problem. In Fig.
5 of ref. [4] some experimental results are given for
unidirectional solidification in a slab. The solid-liquid
interface has been found to vary as the square root of
time. Also in Figs. 2-8 we found that for a solidified
thickness up to 0.2 approximately, the solid-liquid
interface varies as the square root of time. The results
for Fig. 5 in the present work are given in which
maximum artificial mushy region occurs. For
V = 0.34, 0.48, 0.59, the solidified thickness is equal
to 0.108, 0.153, 0.190, respectively.

Acknowledgement—The author would like to thank
Professor A. K. Lahiri, Department of Metallurgy, and Pro-
fessor P. L. Sachdev, Department of Applied Mathematics,
Indian Institute of Science, for some useful suggestions
during the preparation of this manuscript.

REFERENCES

1. W.D. Bennon and F. P. Incropera, A continuum model
for momentum, heat and species transport in binary
solid-liquid phase change systems—II. Application to
solidification in a rectangular cavity, Int. J. Heat Mass
Transfer 30, 2171-2187 (1987).

2. W. W. Mullins and R. K. Sekerka, Stability of a planar
interface during solidification of a dilute binary alloy, J.
Appl. Phys. 38, 444-451 (1964).

3. K. Wollhdver, M. W. Scheiwe, U. Hartmann and Ch.
Karber, On morphological stability of planar phase
boundaries during unidirectional transient solidification
of binary aqueous solutions, Int. J. Heat Mass Transfer
28, 897-902 (1985).

4. T. Fujimura and J. K. Brimacombe, Mathematical
analysis of solidificatin behavior of multicomponent
alloys, Trans. Iron Steel Inst. Japan 26, 532-539 (1986).

5. T. Tsubaki and B. A. Boley, One-dimensional sol-
idification of binary mixtures, Mech. Res. Commun. 4,
115-122(1977).

6. L. 1. Rubinstein, Crystallization of a binary alloy. In The
Stefan Problem, Section 3 of Chap. 2, pp. 52-60. English
translation published by the American Mathematical
Society (1967).

7. B. A. Boley, Time-dependent solidification of binary
mixtures, Int. J. Heat Mass Transfer 21, 824-826
(1978).

8. R. L. Levin, The freezing of finite domain aqueous solu-
tions: solute redistribution, Int. J. Heat Mass Transfer
24, 1443-1455 (1981).

9. K. Wollhdver, Ch. Koérber, M. W. Scheiwe and U.
Hartmann, Unidirectional freezing of binary aqueous
solutions: an analysis of transient diffusion of heat and
mass, Int. J. Heat Mass Transfer 28, 761-769 (1985).

10. J. J. Derby and R. A. Brown, A fully implicit method
for simulation of the one-dimensional solidification of a
binary alloy, Chem. Engng Sci. 41, 37-46 (1986).

11. G. H. Meyer, A numerical method for the solidification
of a binary alloy, Int. J. Heat Mass Transfer 24, 778—
781 (1981).

12. A. B. Crowley and J. R. Ockendon, On the numerical
solution of an alloy solidification problem, /nt. J. Heat
Mass Transfer 22, 941-947 (1979).

13. D.G. Wilson, A. D. Solomon and V. Alexiades. A model
of binary alloy solidification, Int. J. Numer. Meth. Engng
20, 10671084 (1984).

14. W. D. Murray and F. Landis, Numerical and machine
solutions of transient heat conduction problems involv-
ing melting or freezing. Part I. Method of analysis and
sample solutions, ASME J. Heat Transfer 81, 106-112
(1959).

15. M. C. Flemings, Solidification Processing, p. 59.
McGraw-Hill, New York (1974).

16. R. Trivedi, Theory of dendritic growth during the uni-
directional solidification of binary alloys, J. Crystal
Growth 49, 218-232 (1980).

17. 8. C. Gupta, Temperature and moving boundary in two-
phase freezing due to an axisymmetric cold spot, Q. Appl.
Math. 48, 205-214 (1987).

I8. S. C. Gupta, Analytical and numerical solutions of radi-
ally symmetric inward solidification problems in spheri-
cal geometry, Int. J. Heat Mass Transfer 30, 2611-2616
(1987).

19. D. G. Wilson, A. D. Solomon and V. Alexiades, A
shortcoming of the explicit solution for the binary alloy
solidification problem, Lett. Heat Mass Transfer 9,421
428 (1982).



602

S. C. Gupta

SOLUTIONS NUMERIQUES ET ANALYTIQUES DU GEL MONODIMENSIONNEL
D’'ALLIAGES BINAIRES DILUES, AVEC COUPLAGE DES TRANSFERTS DE CHALEUR ET
DE MASSE

Résumé—Cette étude veut présenter des solutions numériques simples, efficaces et des solutions analytiques
de la solidification d’alliages binaires dilués. Bien que les résultats numériques et analytiques sont présentés
ici pour la solidification externe 4 symétric sphérique, les méthodes de résolution sont valables pour
plusieurs autres problémes monodimensionnels. On suppose que le transfert de chaleur et de masse n’a
lieu que par diffusion et qu'il y a équilibre thermodynamique local sur le front de solidification qui est
supposé planaire. Dans cette étude, les courbes de solidus et liquidus sont supposées linéaires, bien que des
diagrammes de phase plus généraux puissent étre considérés. Des résultats numériques sont présentés
pour des larges domaines de rapport de diffusivités. L’existence de gradients brusques de concentration
au front ne nécessite aucune modification spéciale du schéma numérique. En utilisant la présente méthode
analytique, toutes les solutions analytiques antérieures pour une région semi-infinie, peuvent étre traitées
d’une fagon systématique.

NUMERISCHE UND ANALYTISCHE LOSUNG DES EINDIMENSIONALEN
ERSTARRUNGSVORGANGS IN I?UNNFLUSS!GEN BINAREN LEGIERUNGEN
MIT GEKOPPELTER WARME- UND STOFFUBERTRAGUNG

Zusammenfassung—Die Absicht dieser Studie ist es, einfache und effektive numerische und analytische
Lésungsverfahren fiir die eindimensionale Erstarrung in diinnfliissigen biniren Legierungen zu erhalten.
Obwohl die numerischen und analytischen Ergebnisse hier fiir eindimensionale sphérische Koordinaten
erstellt wurden, ist die Ldsungsmethode auch fir einige andere eindimensionale Erstarrungsprobleme
giiltig. Es wird angenommen, daB dic Wirme- und Stoffiibertragung nur mittels Diffusion geschieht und
ein ortliches thermodynamisches Gleichgewicht an der Phasengrenze auftritt, welche eben sei. In dieser
Studie werden Solidus- und Liquiduskurven als lincar angenommen; es konnen jedoch auch alligemeine
Phasendiagramme angepaBt werden. Die numerischen Ergebnisse werden fiir einen weiten Bereich des
Diffusivititsverhiltnisses dargestellt. Das Vorhandensein steiler Konzentrationsgradienten an der Erstar-
rungsfront erfordert keine besondere Anpassung des numerischen Verfahrens. Mit der neuen dargestellten
analytischen Methode kdnnen alle existierenden exakten analytischen Lésungen, die nur fiir haibunendliche
Gebiete gelten, systematisch abgeleitet werden.

YUCIEHHBIE U AHAJIMTUYECKHE PEMIEHUA OZHOMEPHOM 3AJAYU
3AMOPAXHUBAHHA PA3IBABJIEHHBIX BMHAPHBIX CIUTABOB INPH CBASAHHOM
TEILUIO- H MACCOITEPEHOCE

Amsoraums—HailaeHn npocThie H PPEXTUBHBIC SHCICHHBC H AHAINTHYCCKHE PCIlICHHS OIHOMEpPHOI
3a0a9H 3aTBEpACBAHES pa3GasneHuBIX GuHapHsix crnasos. HecMoTps Ha To, 4TO YHCACHHLIC H AHAIHTH-
YeCKHE PE3YALTATH NOMYHCHB 1A MPOLCCCR OTHOMEPHOTO PRANANBLHO CHMMCTPHYHOro BHENIHErO obe-
PHYECKOTO 3aTBEPACBAHHS, MCTOAL PEIICHHS MOTYT GLITH PacCTIPOCTPRHEHH H Ha JPYTHE OXHOMEDHbIC
sanavu. [Ipeanonaraercs, TO HMMEET MECTO TOMBKO MHDYIMOHHBI TENNO- H MACCONCPEHOC H Ma
$POHTE 3aMOpDRXHBAHHA CYUWICCTBYET JIOKANLHOC TEPMOIMHAMNYECKOC paBHOBecue, Cumraercs, 4ro
KDHBBIC CONMAYCA H JIMKBHAYCA SBASIOTCA NHHCHHMIMY, OZHAXO MOryT GuITL HCmoOAL3OBAaHW U Gonee
obuge dazossie auarpavmsl. [IpRBOAATCR THCACHHMC PEIYNLTATH WA IIKPORMX IHANASOHOB 3Ha4C-
Huli oTHOwWeHKA xoxppnmenTon uddysun. Boasmoill rpaxueHT XOHNEHTpaun# Ha GpoHTe MNABICHUS
Ke Tpebyer cnemmanbHbx Momuduxamuil wucnennolt cxemul. ITPEANOXEHHIIM AHAMHTHYECKAM METOAOM
MOryT GMTh NOMYdYCHH BCC paHec HANNCHHBIC AHAIHTHYCCKHC DEIUCHHN [UIA HOMYyOrpaHmyeHHOH
obnacru.



