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Abstract-The purpose of the present study is to present simple and effective numerical and analytical 
solutions of onediiensional solidification of dilute binary alloys. Although the numerical and analytical 
resuhs are presented here for one-dimensional radially symmetric inward spherical solidScation, the 
methods of solution are valid for several other on~imension~ problems. It is assumed that the- heat and 
mass transport takes place only by diffusion and there is local thermodynamic equiiibriurn at the frCang 
front which is assumed to be planar. In the present study, solidus and liquidus curves are assumed to be 
linear, however, more general phase diagrams can also be accommodated. Numerical results are presented 
for wide ranging values of the ratios of diffusivities. The occurrena of steep concentration gradients at the 
freezing front does not require any special modification of the numerical scheme. Using the present 
analytical method, all the previously existing exact analytical solutions which pertain only to the semi- 

infinite region can he derived in a systematic way. 

1, INTRODUCTION 

DEPENDING on the assumptions made about the 
nature of the solid-liquid interface whether it is taken 
as planar or nonplanar, the literature on binary alloy 
solidification problems can be divided, broadly, into 
three classes. Class I consists of those problems in 
which the freezing front is taken as planar and it 
distinctly separates the solid region from the liquid 
region with no mushy zone in between. Mostly 
numerical solutions, and a few analytical solutions, 
exist for these problems. In class II problems, the solid 
and liquid regions are separated by a mushy zone in 
which solid and liquid both coexist. The fraction of 
the soiid present in the mushy zone is approximated 
in some suitable way to carry out numerical com- 
putations such as in ref. [I]. As far as we know no 
analytical solution exists for these problems. In class 
III problems, the physical model is the same as in class 
II problems but the objective is to study the stability 
of the planar phase boundary, segregation, relations 
between the solid fraction and the temperatures in the 
mushy zone, etc., 8uch as in rcfs. [2-4]. 

The present study belongs to class I probkms and 
therefore only those previously obtained numerical 
and analytical solutions which use the planar phase 
boundary assumption will be discussed here in detail. 
As compared to the Stefan problems, extremely few 
analytical solutions of alloy solidification exist in the 
literature [5-q. This is not surprising as alloy s&ii- 
fication is far mom complicated than the Stefan prob- 
km. In the present problem the temperatures and 
concentrations at the freeaing front are time dcpcn- 
dent and are unknown. The freezing front is not 
known a priori. The concentration has an unknown 

time-dependent discontinuity at the freezing front. 
Tsubaki and Boley 19 and Rubinstein (61 have con- 
sidered one-dimensional alloy solidification in a semi- 
infinite medium. Temperatures and concentrations at 
the freezing front remain fixed constants for all time. 
If natural convection is neglected then the solution in 
ref. [q can be obtained as a particular case of the 
solution in ref. [5]. No systematic method of solution 
has been presented in these papers. In ref. [fl, Roley 
obtained a short-time solution for a finite slab. The 
method of solution does not seem to be applicable to 
other geometries. For alloy solidification, in a spheri- 
cal geometry, no analytical solution or for that matter 
any method of solution has been proposed earlier. 
The main features of the present analytical technique 
which is applicable to one-, two- and three-dimen- 
sional ~rni-invite regions, a on~imension~ spheri- 
cal cavity and one- and two-dimensional cylindrical 
geometries, etc. are as follows. 

The solid and liquid regions at any time are em- 
bedded in the original region occupied by the melt. 
This original region is then extended fictitiously and 
fictitious unknown initial temperatures and con- 
centrations are assumed for the original and extended 
regions. These unknown initial t~~t~~ and con- 
centrations control the conditions at the freezing 
front. This central idea in the present method is inde- 
pendent of the boundary conditions and the geometry 
concerned and depends only on the availability of the 
source solutions. 

Levin [S}, Wollh6ver et 41. [9] and Derby and Brbwn 
[lo] have obtained finite difference numerical solu- 
tions for a finite slab. They have negkcted solute 
diffusion in the solid and thus considered a simph&d 
problem. Some numerical approaches up to 198 1 can 

593 



594 S. C. GUFTA 

NOMENCLATURE 

A coefficients in equation (25) 
c dimensionless concentration of the 

solute in the solution 

CP specific heat of the solid [J kg- ’ K- ‘1 
I) diffusion coefficient [rn’ s- ‘1 
erf ( ) error function 
erfc ( ) complementary error function 
f&) dimensionless prescribed temperature 

in equation (21, prescribed 
tem~rature/T~ 

.A?’ coefficients in equation (26) 
k thermal diffusivity [m* s- ‘1 
K thermal conductivity fJ m- ’ s- ’ K- ‘1 
I latent heat of fusion [J kg- ‘1 

MI slope of the liquidus line in Fig. I 

m? slope of the solidus line in Fig. 1 

NL number of space grid points in the 
liquid 

NS number of space grid points in the solid 

P dummy variable of integration in 
equations (19 j(22) 

r radial coordinate in spherical polar 
coordinates [m] 

R dimensionless radius of the sphere, r/R,, 

RO radius of the sphere [m] 
t time fs] 

r, variable having dimensions of time [s] 
1 run run time of the numerical scheme for 

complete solidification on a DEC 
1090 computer fs] 

T dimensionless temperature, 
temperature/T, 

T‘ freezing temperature of the pure solvent 

PI 
V dimensionless time for analytical 

solution 2(kst/Ri)“* 
X position’of the free&g front 

[dimensionless], distance from the 
origin to the freezing front 

Y dimensionless time for numerical 
solution, t/t, 

AY time step in the numerical scheme. 

Greek symbols 

a1 (&d&J “* 

a2 W&)"* 

a3 W&I"2 

f% 

&/KS 

&I& 

;u, 0 
kstofRfo 

, , I’) dimensionless initial temperatures 
in equations (19), (21), (23) and (24); 
i=L,S 

1 P&T, 
$,(‘). di(*) dimensionless initial 

concentrations in equations (20) and 
(22~(24) ; i = L, S. 

Subscripts 
L liquid 
S solid. 

be found in ref. [S]. In the semi-analytical approach 
adopted by Levin [S], the numerical solution is of 
routine type and the generalizations of the methods 
employed in refs. [9, lo] to suit the present problem 
are not known. Meyer’s (111 numerical solution per- 
tains to a two-phase coupled problem but is com- 
plicated, at least, as compared to the present work. 
We shall discuss Meyer’s solution subsequently after 
the present numerical scheme has been described. 
Crowley and Ockendon 1121 and Wilson et al. fl3] 
have used an enthalpy method for numerical solutions 
of a finite slab. Roth these works sutl’er from the 
disadvantage that when the thetmal and mass d&s- 
ivities are different in the solid and liquid phases, 
respectively, some modified values are assigned to 
these parameter values. The validity of these modified 
values does not follow from any physical law but they 
are accepted since the numerical values compare well 
with Rubins~n’s solution {6] which is a special type 
of solution in which the melting temperature is inde- 
pendent of time. Only explicit finite difference schemes 

have been used in refs. [12,13] which are generally 
unsuitable for longer times. In the present study, the 
idea of moving grid points (14) has been suitably 
exploited to suit the coupled problem. After over- 
coming the difficulties encountered, an accurate pro- 
cedure has been indicated which is readily applicable 
at least to class I problems. 

In all the works [8-131 reported earlier, the solid- 
liquid interface has been assumed to be planar and 
theeffects of advection in the melt have been neglected 
which is also the case in the present study. In rapid 
solidification of alloys, the physical model assuming 
a planar phase boundary adequately represents the 
real situation [15]. Recently Trivedi (161 has given a 
criteria according to which the existence of a planar 
phase boundary could be predicted. This is just to 
emphasize that, depending on the parameter values, 
there could be situations in which the mushy region 
may not occur or its effect may not be signi&ant. We 
shall see later that in Figs. 2 and 3 of this paper, no 
mushy region occurs. However, it cannot be denied 
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that in many situations the planar phase boundary 
model is inadequate and also advective terms in the 
melt region cannot be neglected. 

The main purpose of the present study is to present 
simple and e&ctive numerical and analytical solu- 
tions of class I problems which are till now missing in 
the literature. Since the present numerical scheme is 
valid for diffusion in both the phases and the par- 
ameters can have wide ranging values, it is hoped that 
this study will help in a better understanding of the 
alloy solidification process. 

2. PROBLEM FORMULATION 

Consider a binary alloy of two components A and 
B which is in the liquid state at time I = 0 and occupies 
the spherical region 0 Q R G 1 ~on~~e~ion~ radi- 
ally symmetric problem). Component B forms a dilute 
solution in component A. The alloy is cooled at the 
surface R = 1 and the temperature is prescribed there. 
If the presoribed surface temperature satisfies certain 
conditions which are discussed below in equations 
(17) and (18) then the solidification will start at the 
boundary and with time, the solid-liquid interface 
which is assumed to be sharp, will progress towards 
the interior till the whole of the alloy gets solid&d. 
It is assumed that there is local thermodynamic equi- 
librium at the freezing front and solidus and liquidus 
curves are linear as indicated in Fig. 1. The problem 
under consideration is to find the temperature and 
concentration profiles in the solid and liquid regions 
and the freezing front satisfying the following dimen- 
sionless differential equations, initial, boundary and 
interface conditions. 

Solid region 

2dTs 
z=;&RTs), X(Vj9R< I, V>O (1) 

TSl/b, =fsw, V20 (2) 

&2 =s 
~~=;~(RCd, X(V)6R9 I, V>O (3) 

ac, I dR.4 -0, v>o. 

1.0 

ii 
2 

Liquidus:T,=l- m,C, 

d 
L 

; 

Solidus: Ts=l - mt C, 

0.0 CONCENlffAlION 

FIG. 1. Linearized phase diagram for a dilute binary alloy. 

Liquid region 

,aT‘ 
ZQ’~“~aR”. Va2(RTL) O<R<X(V), V>O (5) 

T~iv-e = @p(R), 0 G R Q I (6) 

(7) 

za2ac” 
,x=;$(RGL), OGR<X(V), V>O 

(81 

CLIY-0 f = &“(R) 0 Q R 6 1 (9) 

acL 
BRR_O = O* 

00) 

Solid-liquid interface conditions 

21 dX =-_- 
VdV (11) 

TL~R=X = 1 -mCLIR-Y (13) 

Tsl,-x = 1 -m*G IRIX (14) 

m2G IRd = m CL IR-x (15) 
X(0) = 1. (16) 

Equations (I) and (5) are the heat conduction equa- 
tions and equations (3) and (8) the mass diffusion 
equations. Equations (2) and (4) are the prescribed 
boundary conditions at R = 1 which could be time 
dependent and equations (6) and (9) are the initial 
conditions which could be space dependent. Equa- 
tions (11) and (12) are the heat balance and mass 
balance conditions, respectively, at the interface. The 
liquidus line is given by equation (13) and the solidus 
line by equation (14). Temperature is continuous 
across the interface. m, 3 0 depending on whether 
m Jm2 ( 1. All physical parameters are taken as con- 
stants but tbey could be different for different phases. 
Both the phases have the same density and so there is 
no natural convection in the melt. For the com- 
mencement of the solidification at R = 1 at time V= 
0, we must have 

fill’)(R) Q 1 -m,#‘(l), 0 G R Q 1 (17) 

A(v) Q 1 -m,cb!‘Yl), V 2 0. (181 

Without any loss of generality it can be assumed that 
the solidiication commences at R = 1 at time V = 0. 
Baause, if the solidification starts at V = V,, V, > 0, 
the concentration of the liquid remains unchanged 
for 0 C V G V, and f&“(R) can be regarded as the 
temperature of the liquid at V = V,. 
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3. METHOD OF SOLUTION AND fs(V) = f jpP’, If2 0. (26) 
ANALYTICAL RESULTS n-0 

The solutions of equations (i), (3), (5) and (8) can 
be written as follows : 

The problem now is to determine the unknown 
coefficients occurring in equations (23)-(25). The 
method of dete~jning unknowns is similar to the one 
described in detail in earlier works [17,18] in which 
Stefan problems have been studied. Just for com- 
pleteness sake we mention here that the solutions 
given in equations (19)-(22) are substituted in equa- 
tions (2), (4), (IO)-( 13) and (15) and the nth deriva- 
tives of these equations for n = 0, 1,2,. . . , with respect 
to V are obtained. The unknown coefficients can be 
determined in a systematic way by taking the limits 
V + 0+ of these equations. The details of the algebra 
are not given here. The coefficient A, in the moving 
boundary and some related quantities are given 
below. In the numerical work, the coefficient A, was 
also included but is not given here to save space 

2JxlA, = 2e-A~{ll,o)-f9&‘)(l)j 

-rlB e -&f {e~*‘(l)--eZ”(l)~ (27) 

erf(A,)B:(l) = (i+erf (A,)fJ’,“- i+mz$l” 

Ts = --& 

30 

+ pe -(R-/J)‘/~~ /IQ’(~) &, 

1 
, 

O<R<co,V>O (19) 

cs = e-f& 

aa 

+ pe -=:IR-F)2/~* &*‘Q,) dp 

1 
, 

O<R<<,V>O (20) 

T, _ J;;v *lp {e-z~(R-P)Z/Y’_e-li(R+P)‘/Y2) [I 

* @‘01) dp 
1 

, O<R<co, V>O (21) 

CL = cv [S .Ip {e-l:(R-pt~/v'_e.f(R+Pi'/v') 

- #~*‘~) dp 1 9 0 4 R < co, V> 0. (22) 

It can be checked that TL in equation (21) satisfies 
conditions (6) and (7) and C, in equation (22) satisfies 
conditions (9) and (10). The initial temperatures 6$‘), 
eg” and eC2) and initial concentrations &‘), #&*I and 
#i*) are fictitious and are unknown. They play an 
important role in satisfying the boundary conditions 
at the freezing front. Mathematically there are seven 
unknowns and seven conditions to be satisfied. The 
following series expansions for the known and 
unknown functions will be assumed : 

(fq”,f#Jj”) = f (R-l)” 
ayp, #!I’) 

n-0 
Eap’ 

R-I’ 

0 < R < 1; i = L, S (23) 

1 c R < 00 : i = L, S (24) 

X(V) = i+ f A,Y”, v>o (25) 
n-l 

(28) 

0$2’( 1) = 2$O’ - 84’)( 1) (29) 

{i-i-erf (A,r,))0~*‘(1) = 2-2mz&“(i) (30) 

2m2#&“(i) = m,[erfc jA,~,)&“(i) 

+(I ferf (A,~~~~~~~)(i)] (31) 

#b”( 1) = &“( 1) (32) 

[JR~(:AI(l-m,/m2){l+crf(A,~Xj)j 

_tg3fi, e-AX]&z)(l) = [z,jj[ c=“izJ 

--J&i -m,/m2)A, et-k ~A,~~)]#~)(i). 

(33) 

The numerical values of A, and A2 from their ana- 
lytical expressions can be easily calculated. In 
principle, the coefficients A,, Aq, etc. in the moving 
boundary can also be calculated but the algebra 
becomes extremely lengthy. Along with the unknowns 
of the moving boundary, the unknowns in the tem- 
perature and concentration solutions are also deter- 
mined. The temperature T,(R, V) in the liquid region 
which is valid for small V and small ] R- 1 f is given 
as 

T&R, V) = ferfc {a,(R- 1)/V] 

at&‘) 
x I ~:“u)-+-(R- l)-& RI, - (2JxsfR) I 1 V 

x 
( 

f?l(1)+(2R- l)fg 
I I R=i 

x exp {-cl@- 1)*/V*) 

+t[2-erfc{a,(R-1)/V)] fI$,2)(i)+(R-i) 
1 
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aep 
XdRR_, I I exp { -a:(R- l)2/Vz} 

+termsofthetype(R-l)“‘V”, 

where m+n&2, V>O, R>O. (34) 

The derivation of the above solution is similar to the 
solutions discussed in detail in refs. [ 17,181 in which 
the justification of the method of solution, jus- 
tification of the series expansions for known and 
unknown functions, the time for which the short-time 
solution is valid, etc. have ako been discussed in the 
context of Stefan problems. To determine Ts(R, V), 
put Q, = 1 and replace the subscript L by subscript S 
everywhere in equation (34). Cs(R, V) and C,(R, V) 
can be determined by putting a, = a2 and a, = a,, 
respectively, in equation (34) and replacing 0 by r$ 
everywhere. 

4. FURTHER APPUCATtONS OF THE 
ABOVE METHOD 

By choosing an appropriate source solution and 
using the above method of analytical solution, the 
solution of several coupled heat and mass transfer 
problems pertaining to a semi-infinite medium, cyl- 
indrical geometries and an infinite medium with a 
spherical hole, etc. can be obtained. The boundary 
conditions prescribed at the lixed boundaries of the 
regions considered could be of the first, second or 
third kind. It may be pointed out here that once an 
appropriate source solution is chosen for the region 
under consideration and temperature and con- 
centration solutions are written down in terms of the 
source solution, the method of solution remains the 
same as described above and only the details of the 
algebra change. Although the detaib of the algebra 
have been avoided here to save space, it may be men- 
tioned that the present solution is obtained in a sys- 
tematic and straightforward manner. The solution so 
obtained is in general a short-time solution. However, 
in some cases, such as the problem considered by 
Tsubaki and Boley [5], an exact analytical solution 
can be obtained by the present method which agrees 
with the solution given in ref. [6]. The additional 
advantage in the present method is that the solution 
is obtained in a systematic way and does not depend 
on the fortuitous choice of functions. 

5. NUMERICAL SOLUTION AND DISCUSSION 

i= i,2,..., N,; J-0,1,2,3 ,... (35) 

Superscript i indicates that the quantity is evaluated 
at the ith nodal point and superscript J indicates that 
the quantity is evaluated at time JAy; ARL is the 
uniform distance between any two space nodal points 
in the liquid region. The nodal point i = 0 corresponds 
to the point at the moving interface. Suppose that the 
freexing front, temperatures and concentrations are 
known at time JAy. Equation (12) can then be used 
to determine a first approximation of X” ’ in which 
the concentration derivatives are calculated at time 
JAy using three point formulas. Equation (11) is then 
used to obtain a first approximation of T, at X” ’ 
and at time (J+ Ifby. In doing so, some of the quan- 
tities are not known at y = (J+ 1)Ay; therefore their 
values at time JAy are substituted instead. Tem- 
peratures and concentrations at all the space nodal 
points and at time y = (J+ 1)Ay can now be calculated 
from the discretized equations (l), (5), (3) and (8). 

The method of numerical solution will be discussed A second approximation of X” ’ is obtained from 
here in some detail so as to make it useful to the reader. equation (12) in which the concentration derivatives 
The emphasis is more on showing the feasibility of are now calcuiated at time (J+ 1)Ay. A second 
the numerical scheme for a wide range of parameter 
values and also to indicate the ease with which the 

approximation of Ts at x’+ t and at time (J+ I )Ay is 
then obtained from equation (I 1). X” ’ was iterated 

numerical scheme can handle sharp concentration till the absolute difference between successive iter- 

gradients near the phase boundary. Because of these 
priorities, no extensive study of any alloy has been 
done in particular. 

The main feature of the Murray and Landis finite 
difference numerical scheme [14] is that the space grid 
points move with the freezing front position. An 
efficient execution of this numerical scheme for a one- 
dimensional Stefan problem has been recently pro- 
posed {18]. The present numerical work concerning 
the alloy solidification is a suitable adaptation of the 
previous work. The major hurdles one comes across 
in the coupled problem are the determination of the 
temperature or the concentration at the freezing front 
which is not known a priori, and, the handling of the 
sharp concentration gradients at the free&g front. 
A very large number of numerical experiments were 
carried out to arrive at an appropriate execution of 
the numerical scheme which in essence is as follows. 

The dimensionless times used for analytical and 
numerical works are V and y, respectively. After 
assigning appropriate velocities to the space nodal 
points, the finite difference discretization of the heat 
equations (1) and (5) and mass diffusion equations (3) 
and (8) can be carried out using the implicit scheme. 
For example equation (8) can be discretized as 

iJ+ I 
CL - c,N 

AY 
+&c~+IJ+L2c~J+’ 

-X’)(N,-I-i)R, 

AyX’+ ’ 
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ations became less than 10e6. At subsequent times, 
the various quantities were again calculated in the 
manner indicated above. At time y = Ay, the ana- 
lytical values of freezing front, temperatures and con- 
centrations in the solidified thickness were used in the 
numerical scheme. The analytical solution was not 
used afterwards at any other time. It may be remarked 
here that based on the above procedure, several ways 
of determining moving boundary, temperatures, etc. 
can be thought of and many of them were tried. The 
procedure listed above was found to be the most stable 
and accurate. 

The determination of the freezing front and freezing 
temperature in Meyer’s work (refer to equations (15) 
and (16) in ref. [ 111) does not seem to be as simple and 
straightforward as in the present numerical scheme. 

A large number of numerical experiments were 
carried out and it can be said that successive iterations 
do converge, in the sense that the difference between 
two successive iterations becomes less than 10m6 for 
wide ranges of parameter values. Do the iterations 
converge to the correct value? To verify this, several 
analytical and numerical checks are available. In 
Table 1, the numerical solution has been compared 
with the analytical solution for two sets of parameter 
values. The analytical solution is a short-time solution 
and is valid for small values of V and 1 R - 11 (refer to 
refs. [17,18] also) and therefore, temperatures and 
concentrations in the liquid cannot be compared with 
the numerical solution at all the space grid points. It 
may be noted that in Table I for V = 0.15, the numeri- 
cal scheme has run for about 20 time steps with 
Ay = 0.001 and the good agreement between the 
analytical and numerical solutions is in order. The 
integral mass balance check provides a useful numeri- 
cal check. A second numerical check is provided by 
the stability of the numerical results when the time 
step is halved and the number of space grid points 

is doubled. Later, these numerical checks have been 
discussed further in the context of the figures drawn. 

In accordance with the physical and mathematical 
model considered in equations (l)-(14). the solid- 
liquid interface at any time divides the region 
0 < R < 1, into two distinct regions, namely, solid 
and liquid regions. Our mathematical and numerical 
models do not account for the existence of the mushy 
region. The temperatures of the points lying in the 
region X(V) f R < 1 should be less than or equal to 
TSIREX. These points will constitute a solid region. 
The temperatures of the points lying in the region 
0 < R f X(V) should be greater than or equal to 

TSIR-X. These points will constitute a liquid region. 
If the numerical values of the temperatures do not 
satisfy the above criterion then they are inconsistent 
with the physical model considered in class I problems 
and such values will be regarded as inaccurate. In 
none of the numerical experiments conducted in this 
study, were inconsistent values obtained. 

In Fig. I, the solidus and liquidus lines are defined 
by equations (I 3) and (14). The phase diagram in Fig. 
1, is interpreted as follows. 

If the point (C, T) lies above the liquidus line then 
it is in a stable liquid phase, while if the point (C, T) 

lies below the solidus line then it is in a stable solid 
phase. If the point (C, T) lies in the region between 
the liquidus and solidus lines, it is regarded as a point 
in the mushy region. Wilson ef nl. [ 191 have interpreted 
the numerical results of Rubinstein’s solution [6] per- 
taining to a class I problem according to the above 
criterion and pointed out the existence of an artificial 
mushy region just in front of the interface. The term 
artificial is justified here as in class I problems, only 
solid and liquid regions exist. In Figs. 2 and 3 of this 
paper, no artificial mushy region occurs but in Figs. 
4-8 it does. 

In Figs. 2-8, temperatures, concentrations and 

Table 1, Comparison of the numerical solution with the short-time analytical solution for two sets of parameter values. First 
setofparametcrvalues:a, = 3,al= l,aj = 3.1 = 1.5, fl = 2.0, m, = 0.4.~~ = 0.6. q”(R) = 1.1. &“(I?) = O.l..&(Vj = 0.8 

Temperatures in the Concentrations in the Freezing 
solid at the points? solid at the points front 

V RI J72 R3 RI R2 R3 X( 4 

0.077 0.95451 0.8777 0.8010 0.0763 0.0763 0.0762 0.9925 
0.9546 0.8772 0.8000 0.0756 0.0756 0.0756 0.9939 

0.15 0.9554 0.8797 0.8047 0.0762 0.0162 0.076 I 0.9853 
0.9541 0.8767 0.8000 0.0763 0.0764 0.0764 0.986 I 

Second set of parameter values: a, = 3, a2 = 50, aj = 20,1 = 1.5. /I = 2.0, m, = 0.4. m2 = 0.6, @2’(R) = 1.1, &l’(R) = 0.1, 
A(V) = 0.8 

0.077 0.9422 0.8715 0.8009 0.0967 
0.9430 0.8714 0.8000 0.095 I 

0.15 0.9415 0.8726 0.8042 0.0993 
0.9406 0.8700 0.8000 0.0990 

tRi+,=X(V)+i(l-X(V))/2,i=O, 1,2. 
$ Upper and lower values are analytical and numerical values, respectively. 

0.0956 0.0944 0.9933 
0.0948 0.0947 0.9942 

0.0969 0.0944 0.9869 
0.0976 0.0948 0.9871 
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0.4 0.6 0.8 1.0 
R-, 

FIG. 2. Temperatures, concentrations and freezing front. 
I, = about 6 min. eO’(R) = I. 1, #I’)(R) = 0.1&v) = 0.5, 

Ay I: 0.01, Ns = 101, NL = 401. 

0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1 
R-, 

FIG. 3. Temperatures, concentrations and frazing front. 
r,, = about 6 min. @‘(IQ = 1.4. &“(R) = O.l,fs(y) = 0.5, 

FIG. 5. Temperatures, concentrations and fkezing front. 
t,,,,, = &out 6 min. g’(R) = 1.4, #C’(R) = 0.1, fs( I’) = 0.5, 

Ns = 101, NL = 401, Ay = 0.01. Ay = 0.01, Ns = 101, NL = 401. 

freezing front arc shown for different sets of parameter The numerical work involves a large number of 
values. The boundary temperatures, initial tcm- parameters. It seems difficult to associate a particular 
peratures and initial concentrations have been taken effect in the graphs with a specific parameter with 
as constants. Since there are in generaI sharp con- certainty, more so, when the numerical work was done 
centration gradients around the freezing front, the mostly to show the feasibility of the numerical 
number of space grid points A$, and #s have to be scheme, but still some observations can be made. In 
larger as compared to the Stefan problem of the same Fig 2, the ratios k@s and kJ& are both equal to 
geometry. In the captions to the figures, the values of one. Numerical rest&s were also obtained for @ = 2.0 
A$, NL, the computer run time, etc. are also given. and other parameters remaining the same as in Fig. 2 

f! 1: I! I 
I I 

0.0 0.2 0.4 R-Y 0.8 1. 

FIG. 4. Temperatures, conantrations and freezing front. 
rMI 9: about 7 min. f&‘)(R) = 1.4, q5j,‘)(R) = 0.1&v) = 0.5, 

Ay = 0.01. Ns = 101, NL = 401. 

R--c 

1 
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FIG. 6. Temperatures, concentrations and freezing front. 
1 run = about 6.5 min. #L’(R) = 1.1, 4!“(R) = 0.1, 

h(V) = 0.8, Ay = 0.01, Ns = 161. NL = 801. 

R---c 

FIG. 8. Temperatures, concentrations and freezing front. 
L = about 8.25 min. a”(R) = 1.1, &“(R) = 0.1, 

&(I’) = 0.5, Ay = 0.005, NS = 161, NL = 801. 
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FIG. 7. Temperatures. concentrations and freezing front. 
t ruun = about 6.25 min. O’;‘(R) = 2.0, #‘(R) = 0.2, 

,fc(V) = 0.2. AJJ = 0.01, Ns = 161, NL = 801. 

but are not reported here to save space. In both cases, 
no artificial mushy region occurs. In the latter case, 
the total solidification time increases by about 25% 
but if one compares the temperatures and con- 
centrations with those in Fig. 2 at the same freezing 
front position then the maximum difference found is 
about 2-3% which occurs at points far away from the 
freezing front. In Fig. 3. the ratio kL/DI = 1.8. No 

artificial mushy zone occurs. In Figs. 2-5, for larger 

times, the concentration has significantly changed at 
all points of the region 0 < R < A’ but in Figs. 6-8, 
even for larger times, the concentration changes are 
confined only to a small neighbourhood of the freez- 
ing front. This effect could be due to larger values of 
c(r in Figs. 6-8 than in Figs. 2-5. 

In Figs. 2-5, all the parametric values are neither 
too high nor too low. The numerical scheme in all 
such cases was found to run fairly smoothly, in the 
sense that successive iterations converge fast, the inte- 
gral mass balance check can be satisfied almost 
exactly, the variations in temperatures, concentrations 
and freezing front values can be made insignificant 
for small changes in the time step and the number of 
space grid points by appropriately choosing Ay, N, 
and NL. 

In Figs. 4-8, for larger times, the temperaturecurves 
in the region 0 < R < X have become horizontal lines 
and this could be attributed to the large values of the 
ratio k,/DL. However, initial and boundary tem- 
peratures also play a role in this. The high thermal 
diffusivity in the liquid seems to be responsible in 
reducing total solidification times in Figs. 4 and 8. In 
Fig. 6, the large solidification time is due to the high 
value of the prescribed boundary temperature. 
Numerical results were also obtained for a prescribed 
boundary temperature equal to 0.5 in Fig. 6 and the 
total solidification time is reduced to less than half of 
that in Fig. 6. In Fig. 7, m, and m2 have negative 
values. The maximum error in the integral mass 
balance check was found to be less than 0.3% in Figs. 
2-5 and the same error in Figs. 6-8 is less than 1% . 

Several trial runs were carried out for the cases in 
which m, = 4, m2 = 20, a, = 1, a2 = 20, a, = 1 (the 
case of low solute diffusion in the solid) remained 
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lixed and other parameters were varied. The numerical 
scheme works ahight but it takes a very long time. 
In about 6 min computer run time, the maximum 
solidified thickness obtained was about 0.2 indicating 
that for some limiting cases convergence could be 
slow. 

Apart from some specific comments made earlier 
about the numerical work, the following general com- 
ments can be made. 

(1) A 1 or 2% error in the integral mass balance 
check was not found to be a serious problem provided 
the error changes only marginally with time say, from 
2% it becomes about 2.5% during total solidification. 
Whenever this error remained stable, it was possible 
to make it insignificant by a suitable choice of Ay, NL 
and Ns. 

(2) The freezing front and temperature values were 
found to be fairly stable with respect to changes in 
Ay, NL and Ns but concentration values especially 
near the boundary R = 1 varied in some cases by l- 
3%. If one is prepared to accept an error of l-2% in 
the temperatures and freezing front values and about 
5-l 5% in concentration values, then the computer run 
time can be considerably reduced by using a smaller 
number of grid points, e.g. Ns = 41 and NL = 121. 

(3) It is often not possible to relax the convergence 
criterion of successive iterations, i.e. go to the next 
time step if the absolute difference between successive 
iterations becomes less than 10m5 or lo-‘, etc. as in 
some cases the results became absurd after some time 
steps. 

Some comparison of general features of the numeri- 
cal results obtained here can be carried out with exper- 
imental data. However, checking of numerical values 
with experimental values is generally difficult unless 
the experiments are performed in accordance with 
the mathematical model and experimental values are 
available. It is well known that for short time the 
solid-liquid interface in a spherical problem has the 
same pattern of growth as in the slab problem. In Fig. 
5 of ref. [4] some experimental results are given for 
unidirectional solidification in a slab. The solid-liquid 
interface has been found to vary as the square root of 
time. Also in Figs. 2-8 we found that for a solidified 
thickness up to 0.2 approximately, the solid-liquid 
interface varies as the square root of time. The results 
for Fig. 5 in the present work are given in which 
maximum artificial mushy region occurs. For 
V = 0.34, 0.48, 0.59, the solidified thickness is equal 
to 0.108,0.153,0.190, respectively. 
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SOLUTIONS NUMERIQUES ET ANALYTIQUES DU GEL MONODIMENSIONNEL 
D’ALLIAGES BINAIRES DILUES. AVEC COUPLAGE DES TRANSFERTS DE CHALEUR ET 

DE MASSE 

R&urm&Cette etude veut presenter des solutions num&iques simples. efficaces et des solutions analytiques 
de la solidification d’alhages binaires diluts. Bien que les rt!sultats numiriques et analytiques sont preset& 
ici pour la solidification exteme I sym&rie sph&ique, les methodes de r&solution sont valables pour 
plusieurs autres probl&mes monodimensionnels. On suppose que le transfert de chaleur et de masse n’a 
lieu que par diffusion et qu’il y a Cquilibre thermodynamique local sur le front de solidification qui est 
suppose planaire. Dans cette etude. les courbes de solidus et liquidus sont supposies lit&&es, bien que des 
diagrammes de phase plus gintraux p&sent 6tre consider&. Des r&hats numeriques sont p&e&s 
pour des larges domaines de rapport de diffusivids. L’existence de gradients brusques de concentration 
au front ne n&cessite aucune modification speciale du schema numirique. En utilisant la presente mtthode 
analytique, toutes les solutions analytiques anterieures pour une r&ion semi-infinie, peuvent itre trait&es 

d’une faGon systbmatique. 

NUMERISCHE UND ANALYTISCHE L&SUNG DES EINDIMENSIONALEN 
ERSTARRUNGSVORGANGS IN DUNNFLUSSIGEN BINAREN LEGIERUNGEN 

MIT GEKOPPELTER WARME- UND STOFFUBERTRAGUNG 

Zus8mmenfasfumg- Die Absicht dieser Studie ist es, einfache und effektive numerische und analytische 
Losungsverfahren fir die eindimensionale Erstarrung in diinnfltissigen bingren Legierungen zu erhalten. 
Obwohl die numerischen und analytirhen Ergebnisse hier Rir eindimensionale sphitrische Koordinaten 
erstellt wurden, ist die Liisungsmethode such fiir einige andere eindimensionale Erstarrungsprobleme 
gtiltig. Es wird angenommen, da6 die W&me.- und StoIRibertragung nur mittels Diffusion geschieht und 
ein Brtliches thermodynamisches Gleichgewicht an der Phasengrenxe auftritt, welche e&n sei. In dieser 
Studie werden Sotidus- und Liquiduskurven ah linear angenommen; es k6nnen jedoch such allgemeine 
Phasendiagramme angepaBt werden. Die numerischen Ergebnisse werden fiir einen weiten Bereich des 
Diffusivitiitsverhiiltnisses dargestellt. Das Vorhandensein steiler Konxentrationsgradienten an der Erstar- 
rungsfront erfordert keine bcsondere Anpassung des numerischen Verfahrens. Mit der neuen dargestelhen 
analytischen Methode k6nnen alle existierenden exakten analytischen L6sungen, die nur I% halbunendliche 

Gebiete gelten, systematisch abgeleitet werden. 

~HCJIEHHbIE M AHAJIHTHHECKHE PEIIIEHHII OJIIiOMEPHOtl3AJ@4M 
3AMOPAXIHBAHHlI PA3BABJIEHHbIX BHHAPHbIX CTIJIABOB I’IPH CB63AHHOM 

TEIIJIO- I4 MACCOI’IEPEHOCE 

mrmn-HatMenu npocrw n we xncnemmm n amursmmecxne pemenna onnomeptroti 
sammu saraepneaatma pas6aanetttmrx 6mtapnux ctutanon. Hec~orpa na TO, xro xncnennbte E anamrrtr- 
rlecxne peaynbraru ttw AJm nponecca oatnomplloro pansmabno camcrpRmOrO BitetmmrO U&‘- 
pmtecxoro xa~aepneaanita, ROAN pemeniu ~otyr 6wrx 7 u na npyrxe onnoarepa~e 


